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Abstract. Velocity independent dry friction of a slider upon a base is due to an hysteretic response of rela-
tive displacement ρ to a tangential driving force F . We show that the purely elastic model for multistability
considered in a previous publication is in no way essential: multistability arises just as well from adhesion.
We emphasize the physical consequences of multistability for dynamic/static, a.c./d.c. friction. When the
slider is moved from rest by an amount ρ the transition from the zero force static configuration to dynamic
behaviour is progressive, spreading on a range equal to the width of the hysteresis cycle. When ρ is small,
an elastic restoring force ensues, in agreement with observations. The competition of that elastic pinning
with bulk elasticity generates a screening length which we believe is the natural size of Burridge Knopoff
blocks. We then study the effect of elastic interactions between asperities: it is weak for dilute asperities,
but its long range makes it important. In lowest order the interaction mediated displacement of a given
asperity has logarithmically divergent fluctuations: they become comparable to the asperity radius when
the slider size reaches another characteristic “Larkin length” λL, which for dilute micronic asperities is ex-
ponentially large. We give arguments suggesting that individually monostable asperities display collective
multistability on scales larger than λL. For individually multistable sites we show that elastic interactions
give rise to cascade processes in which the spinodal jump of a given asperity triggers the jump of others.
We estimate the size of these cascades that should show up in the noise spectrum.

PACS. 46.30.Pa Friction, wear, adherence, hardness, mechanical contacts, and tribology
– 81.40.Pq Friction, lubrication, and wear

Dry friction of a slider on a base is a very old problem,
at crossroads between surface physics, mechanics and en-
gineering. It has many facets, depending on the geometry
of surfaces in contact, and also on the possible presence
of contaminant (or lubricant) layers. Among the factors
affecting friction, the elastic response to surface pertur-
bations (crucial for long range interaction effects) plays
an important role – but adhesion and plastic flow of the
asperities are equally essential [1,2]. Disentangling these
features is a difficult problem which we do not approach
here: we are concerned only with the elastic part of the
story.

Let us first set the qualitative stage. We consider a
simple situation in which slider and base are in contact
at dilute microcontacts between facing asperities (such a
geometry is realistic in a wide range of normal loads and it
was advocated by Greenwood and Williamson [3] in order
to explain why friction does not depend on the apparent
surface of contact). A given microcontact is characterized
by a configurational coordinate ρmeasuring the horizontal
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distance between its two constituent asperities. The result-
ing interaction V (ρ), whether adhesive or elastic, produces
a tangential force F = −V ′; the elastic response of the
bulk to that surface force acts to shift the coordinate ρ.
A multistable regime may arise either from the potential
V (ρ) itself or from the elastic response: whatever its origin
the corresponding hysteretic behaviour produces a macro-
scopic friction force independent of the pulling velocity [4]
– just the feature we want for dry friction. Within that
general frame we will address two questions:

(i) Can a single asperity display multistability? How
does macroscopic friction ensue? That point was
discussed in a previous paper putting all the emphasis
on purely elastic effects. Here we show that the
frictional behavior induced by contact hysteresis is
quite general, i.e. independent of its physical origin.

(ii) What is the influence of elastic interactions between
asperities? We will see that new physical concepts
emerge, leading to the definition of several character-
istic lengths.
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As it stands our paper does not claim to be “a” theory
of dry friction: it is far too oversimplified for that purpose.
Our aim is to provide simple guidelines in formulating the
problem.

Let ns and nb be the densities of asperities per unit
area respectively on the slider and base. A contact is “ac-
tive” when two asperities face each other: the density of
these asperities is consequently

n = nsnba
2

where a is a typical asperity size (the probability that a
given asperity on the slider finds one facing it on the base
is nba

2). From n = 1/d2 we infer the distance d between
active asperities: “dilute” means a� d. Let the positions
of the two facing asperities be

ris = R+
ρ

2
rib = R−

ρ

2
·

R is the position of the contact and ρ its configuration
coordinate mentioned above. In a constant velocity drift ρ
is time averaged for each asperity while R pertains to an
ensemble average over all geometries. For a system at rest,
both ρ and R are ensemble averaged. In what follows we
shall consider only a naive one dimensional model for ρ:
we do it for the sake of simplicity as it displays most of the
important physics. It is clear that the real situation is 2D:
the corresponding extension has been discussed by Tanguy
and one of us [5]. It is non trivial since the asperities can
escape each other sideways: the issue of tangential stability
is essential. But the qualitative picture that emerges is not
modified much.

Consider first a single contact (or equivalently ignore
the elastic interaction with its neighbours). The interac-
tion energy of slider and base is V (ρ). In [4] we attributed
that interaction to elasticity, as in a Hertz contact: the
two facing asperities retract in order to leave way to each
other. Such a contribution is definitely present, but it is
not the only one: adhesion also contributes. Altogether we
take V as a phenomenological input, assuming only that it
is the non dissipative potential energy of a system in qua-
sistationary equilibrium. Put another way we ignore the
possibility of dissipative friction on a scale smaller than
the asperity size a. That is by no means obvious – indeed
it raises the whole issue of a hierarchy of friction forces,
motion on a scale l depending on friction mechanisms at
smaller scales l′. This is another story, albeit important1:
we do not tackle it.

If the asperity responds without internal friction, a
continuous drift with an infinitesimal velocity v cannot
dissipate energy: the system remains in quasiequilibrium
and no entropy is produced. Any viscous friction due
to a retarded elastic response would automatically result
in a friction force proportional to v, in contradiction to
Coulomb’s law. Finite dissipation at very low velocity can

1 This issue is certainly essential to understand the so-called
“direct effect” in the phenomenological friction laws à la Ruina-
Rice, as well as the slow precursory sliding motion observed
under loads close below the static threshold.

only occur if the contact is multistable in some range of
values of its configuration coordinate, jumping discontin-
uously from one state to another at a spinodal limit: when
the jump occurs, a bunch of phonons is radiated towards
the bulk, carrying energy away. What matters is not dis-
sipation during the jump, which is utterly negligible, but
dissipation after the jump: the radiated phonons never re-
turn to the asperity and they are lost as far as the energy
balance is concerned. We thus conclude that dry friction
can only be explained in terms of hysteresis, a point which
has been appreciated long ago [6,7]. Indeed the macro-
scopic force-displacement characteristic is obviously hys-
teretic: the only relevant questions are “where does the
hysteresis come from?”. Does it appear on the atomic
level or on a (sub)micronic scale? Does it exist for a single
contact or is it a collective effect due to interactions? In
this paper we provide some answers to these questions. In
Section 1, we complement our previous work for a single
asperity. Section 2 is devoted to elastic interactions.

1 Multistability of a single contact

Assume for a moment that slider and base are rigid (no
elastic shear response). The asperity is characterized by
a potential energy V (ρ) = V (rs − rb) the physical ori-
gin of which we do not specify for the moment. This po-
tential gives rise to tangential forces Fs = −Fb = −V ′

respectively on the slider and base. Due to the elastic re-
sponse of the slider and base to these forces, acting in
opposite directions, the two asperities recoil respectively
to (rs + us) and (rb + ub): the configuration coordinate ρ
becomes η = (ρ+u) where u = us−ub is the relative dis-
placement2. (In addition to a displacement there is a local
deformation uij which we ignore: we assume it is absorbed
in the potential V (ρ)). Such an elastic response modifies
F and V : the real energy cost of the contact is the total
energy, pinning + elastic:

U = V (ρ+ u) +
1

2
[λsu

2
s + λbu

2
b ]. (1)

The second term in (1) is the elastic energy stored in the
bulk. λs and λb are elastic stiffnesses which for a single
scale asperity are of order Ea. We note that equilibrium
at a given ρ corresponds to a minimal U :

λsus + V ′ = λbub − V
′ = 0. (2)

2 Reducing the elastic response of the bulk to a displacement
u is an oversimplification: in reality the asperity is subject to
a displacement field u(r), implying an elastic deformation. As
a result the definition of u is ambiguous, depending on where
it is measured. In our schematic model we choose to ignore
such a complication: the local deformation is supposed to cor-
rect the pinning potential V and the stiffness λ. In order to
display multistability, we retain only an average u, the precise
definition of which is lacking (may be the maximum u(r)?).
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Fig. 1. A multistable F (ρ): when the slider moves to the right
(left), the contact remains on the lower (upper) branch until
the spinodal limit ρ+(ρ−) where it jumps to the other branch.

It follows that λsus + λbub = 0: we can therefore write
everything in terms of the relative displacement u,

U = V (η) +
1

2
λu2 (3a)

V ′(η) + λ(η − ρ) = 0 (3b)

where λ = λsλb/(λs + λb) is an effective stiffness. Equa-
tion (3b) fixes u as a function of ρ: the total energy U
depends on ρ both explicitly and implicitly via u.

The real control parameter is the nominal ρ before elas-
tic response, not η (the force on the slider is applied far
away from the contact): we thus express all quantities in
terms of ρ. Since we minimized with respect to u:

dU

dρ
=
∂U

∂ρ
= V ′(η) = −F. (4)

From now on we consider U(ρ) or, equivalently, F (ρ) as
the input of the model, forgetting for a while the ques-
tion of where they come from (note that, due to elastic
response, the bare V is replaced by the total U).

The simplest case is that in which U and F are single
valued: then the contact remains everywhere in quasistatic
equilibrium and no dissipation can occur. This is seen ex-
plicitly if we calculate the work of the pinning force when
the slider is swept:

w = −

∫ +∞

−∞
Fdρ (5)

(the external force is applied far from the impurity where
the displacement is dρ, not dη). Since F = −dU/dρ the
integral vanishes identically, as expected.

The situation is different when F and U are multi-
valued, i.e. when the equilibrium of the contact is mul-
tistable. A typical sketch of the force F (ρ) is shown

U

UU

S1 S2

Fig. 2. The total (elastic + pinning) energy curve U(ρ): the
spinodal limits correspond to the cusps.

V'
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Fig. 3. Contact population (thick line) for sliding toward in-
creasing ρ. The dynamic friction force is proportional to the
striped (dotted) area for forward (backward) sliding.

in Figure 1. The spinodal limits ρ− and ρ+ mark the
limits of metastability: in between, on the reentrant
branch, equilibrium is unstable. The curve F (ρ) is eas-
ily integrated into the energy curve U(ρ) shown in Fig-
ure 2: the (ρ − ρ±)1/2 behaviour of F results in cusps of
U ≈ (ρ − ρ±)3/2. Such a multistable regime leads to hys-
teresis and to discontinuous jumps when the slider reaches
the spinodal limit: velocity independent dry friction is a
direct consequence of that hysteresis, whatever its origin.
We analyze first the content of that statement: a brief dis-
cussion of why hysteresis may occur will come next. Most
of the single asperity properties were described in [4]: here
we add some comments and clarifications.

1.1 Dynamic friction

The work of the pinning force when the slider is swept
is given by (5): it is the hatched area of Figure 3 for for-
ward drift (the dotted one for backward drift). For a round
trip the dissipation is the area enclosed by the dissipation
loop, as in magnetism. Let dn = νdρ be the density (per
unit area) of asperities swept when the slider moves by dρ:
the dissipated energy is wdn and consequently the macro-
scopic friction force per unit area is F = νw (its work is
the dissipated energy). In order to estimate ν we note that
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a given asperity sweeps an area adρ: hence

ν ≈ nsnba ≈
n

a
· (6)

In practice the asperities are random and the work w is a
stochastic quantity which must be averaged.

1.2 a.c. dissipation

When the slider oscillates with an amplitude A only those
hysteresis cycles that jump forward and backward con-
tribute to the steady dissipation. If an asperity jumps only
forward, it will do it once and thereafter it will remain in
quasistatic equilibrium on the same branch of the curve
F (ρ). The dependence of the a.c. dissipation on the oscil-
lation amplitude thus provides information on the distri-
bution of loop widths 2ξ When A is very small dissipation
disappears (the relevant areas w goes to 0).

If an oscillation is superimposed upon a steady drift,
two cases may occur depending on the amplitude A. For
small amplitudes the instantaneous velocity is always for-
ward: the friction force retains its value for steady drift.
For large velocity modulation A, the slider has backward
lapses: the friction force then goes to zero (except for back-
ward jumps of very small cycles). The net dissipation is
the same as for d.c. drift (each asperity jumps once), but
the time dependence is an alternation of finite and zero
forces.

Clearly, in real systems the analysis of such phenom-
ena is complicated by the necessity to disentangle them
from the contributions of dissipative processes occurring
on the internal contact scale and, possibly, of slider vis-
coelasticity. For this purpose, it may be useful to note that,
while the latter effects necessarily vanish in the low fre-
quency/velocity limit, dissipation due to spinodal jumps
is frequency-independent.

1.3 Force noise

All these results crucially depend on an ensemble average
over asperity configurations and hysteresis cycles: fluctu-
ations give rise to noise. For N = n L2 statistically inde-

pendent active asperities the noise amplitude is
√
N |F 2|

(L is the width of the slider). The characteristic displace-
ment scale of that noise is ∆ρ ≈ a: when the slider has
moved by a all the contacts have been destroyed and re-
placed by a new set, and a fresh landscape ensues. If we
ignore elastic interactions between asperities each of them
lives its own life. When interactions are included it may
happen that one jump triggers others, which reflects in
the noise spectrum: we discuss these “cascade jumps” in
the next section.

1.4 Static equilibrium and static friction

The ensemble average over active asperities is character-
ized by a uniform statistical distribution of their nominal
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Fig. 4. The occupation probability P0(ρ) in the static regime
under zero tangential force. P0 = 1 on the heavy branches, 0
elsewhere. When the slider is moved by dρ, the discontinuity
of P0 shifts from A0B0 to AB. The total restoring force is
proportional to the area A0B0AB.

configuration coordinates ρ. When the contact is multi-
stable, one must also specify which of the two metastable
branches is occupied: we thus define an occupation proba-
bility P (ρ) for, say, the lower branch. Consider first a dy-
namical regime in which the slider is swept to the right: all
contacts are drawn to the lower branch of the F (ρ) curve,
up to the spinodal limit S+ (see Fig. 1): P (ρ) is there-
fore 1 throughout the multistable region. The net force on
the slider is the dynamic friction discussed before. If the
external force is suddenly suppressed, the slider must re-
coil by an amount δ in order to achieve a zero net F . The
new probability P (ρ) in the resulting static state jumps
from 1 to 0 at ρ = (ρ+ − δ), the two branches partak-
ing in the static configuration, as shown in Figure 4. (For
narrow cycles ξ < δ the contact may even become monos-
table). If all asperities were the same (and symmetric) the
discontinuity would occur at the Maxwell plateau of the
multistable F (ρ). In practice, as shown by Greenwood and
Williamson [3], the width ξ is randomly distributed about
a peak average value, and the force F is zero only on the
average: broad cycles do not reach the Maxwell plateau,
narrow ones overcome it.

In the above argument we implicitly assumed that the
recoil δ was the same for all asperities: put another way,
slider and base recoil rigidly, the distance between asper-
ities remaining fixed. That is by no means obvious since
elasticity is the basic ingredient of the model. We shall see
shortly that recoil is indeed rigid on length scales smaller
than a screening length λd. On larger scales the above
discussion is oversimplified.

If a tangential force is applied again, the discontinu-
ity of P (ρ) moves back toward increasing ρ. Sliding starts
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Fig. 5. Starting from the static configuration under zero ex-
ternal tangential force, the macroscopic force first displays an
elastic regime when the slider is displaced by an amount ρ.

when it reaches the spinodal limit: it follows that the static
threshold force is identical to the dynamic friction F , in
contradiction with the well known Coulomb law. Indeed
the dynamic Fd is the maximum force that the asperities
can develop: our model has no way to produce a Fs > Fd.
In order to account for such a behaviour, one has to in-
troduce plastic effects into the framework described here,
as discussed by Velicky and one of us [8].

One important point should be kept in mind. While
there is only one way to achieve a steady drift of the slider,
one can prepare a state with F = 0 in many ways. Stop-
ping a drift is one of them, but one might think of bringing
slider and base in contact keeping F = 0 all the way: the
resulting probability P (ρ) will be different (very likely the
discontinuity will be close to the Maxwell plateau for all
asperities, fixed by the “birth” of reentrant cycles). Stop-
ping a driving motor is another, more commonly realized
situation. The slider then remains at rest, after a deceler-
ating transient, under a finite shear loading force < Fs [9].
Another P (ρ), different from the two above ones ensues.

In real experimental situations, the contacts
strengthen slowly under the effect of plastic creep
under load, which results in a slow increase of Fs with the
time spent at rest before sliding. Different distributions
P (ρ) correspond to different distributions of pinning
forces, hence to different rates of creep strengthening.
Static friction thus depends on the past history, a feature
which is confirmed experimentally [10].

1.5 Elasticity in the static regime, screening length

Starting from static equilibrium F = 0, let us move the
slider by an infinitesimal amount dρ: the discontinuity of
P (ρ) shifts from ρ0 to (ρ0 +dρ), as shown in Figure 4. The
displacement creates a net force per unit area∆Fdn where
∆F is the discontinuity (FB − FA) and dn the density of
contacts which lie between ρ0 and (ρ0 +dρ). A typical cy-
cle width is ξ ≈ a and thus dn ≈ ndρ/a: a slider at rest is
subject to an elastic restoring force dF = −αdρ, the elas-
tic constant (per unit area) being α ≈ n∆F/a. When all

asperities have reached their spinodal limit the dynamic
distribution is restored: F saturates at its dynamic value
Fd as shown in Figure 5. The important result is the ex-
istence of an elastic region between the two leftward and
rightward dynamic regimes [9].

Such a surface pinning force competes with the bulk
elasticity. Assume that each interface point x is subject
to an extra displacements us(x) and ub(x) respectively for
slider and base. What matters is the relative displacement:
we set ub(x) = 0, us(x) = u. The force per slider unit area
Φ(x) needed in order to achieve such a displacement will
have two components

- the above surface pinning part −αu(x) due to asperi-
ties;

- the usual bulk term due to the elastic stress field in-
duced by u.

In the simplest case of a single Fourier component with
wave vector k, for a semi-infinite slider:

Φk =

[
α+

|k|Es
2(1− σ2)

]
uk. (7)

Note that the bulk term vanishes when k → 0, as expected
(a uniform translation of the surface with fixed center
of mass creates a small shear uzx ≈ u/H where H is
the slider thickness: the corresponding σzx vanishes if
H →∞). The factor |k| is familiar in all problems in which
the perturbation penetrates in the bulk over a wave length
k−1. We can invert (7) in order to obtain the displacement
u induced by a given surface force Φ:

uk =
Φk

α(1 + |k|λd)
(8)

in which λd is a screening length given by

λd =
E

2α(1− σ2)
≈
Ead2

∆F
· (9)

The response to the force Φ is dominated by surface pin-
ning on long scales kλd � 1, while bulk elasticity is dom-
inant on short scales, kλd � 1. In a purely elastic model
we would expect ∆F ≈ Ea2 and consequently λd ≈ d2/a:
the screening length is much longer than the distance be-
tween asperities. Intrinsic multistability due to adhesion
(see below) should lead to smaller ∆F and consequently
to larger λd.

Note that the concept of a screening length is entirely
due to the elastic restoring coefficient α, which in turn re-
sults from the hysteretic behaviour. It entirely disappears
in the dynamic regime, in which the net force F is inde-
pendent of the position ρ (the probability P (ρ) extends
to the spinodal limit for all active asperities). The average
F is unaffected by the extra displacement u and only the
bulk restoring force remains.

In the static case screening provides a clear answer
to the question raised in Section 1.4 of a rigid recoil of
the slider when F is suppressed. In order to make the
argument as simple as possible, let us assume that the
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Fig. 6. Piecewise linear approximation of the force-
displacement characteristic: the thick part corresponds to oc-
cupied configurations and δ is the recoil starting from the dy-
namic regime.

force-displacement characteristic of a given asperity has
the piecewise linear shape of Figure 6: the cycle half width
ξ is the spinodal limit beyond which dynamic friction is
resumed (the slope discontinuity was washed out in Fig-
ure 5 because of the average over cycle widths). When
that asperity recoils by δ the pinning force is

F = −γ(ξ − δ).

The macroscopic restoring interfacial stiffness coefficient
per unit area is α = nγ. Assume now that α and ξ are
modulated in space about average values α0, ξ0, with char-
acteristic amplitudes α1, ξ1 and a wavelength λ. Rigid
recoil would mean a residual pinning force of amplitude
F1 ≈ α0ξ1. Taking that as our starting point, we are back
at our previous problem: when λ� λd bulk elasticity pre-
cludes response to F1 and recoil is rigid. If on the other
hand λ� λd the system prefers to adjust locally pinning
to 0, which means that recoil adjusts locally by developing
a modulation δ1 ≈ ξ1. The screening length λd marks the
crossover between rigid behaviour at short scales and elas-
tic response at large scales. (That issue of inhomogeneous
recoil in static equilibrium was considered recently by de
Gennes [11]).

1.6 Temporal effects

Up to now time never appears: we assume everywhere qua-
sistatic macroscopic equilibrium. Dissipation occurs if we
introduce viscous friction in the response to the pinning
force: that occurs only, in our approximation of negligi-
ble small scale dissipation, at high velocities, comparable
with those of elastic waves, that we do not consider. In the
opposite limit of very low velocities, plasticity comes into
play: that is another (essential!) story which we do not
touch. In our simple model, time dependence may affect
hysteresis in two ways.

- Activated jumps above the potential barrier before the
spinodal limit. That problem was considered in [4],

where we concluded that thermal agitation was too
small to be significant at a micronic level. We do not
repeat the argument: they lead to a slow logarithmic
growth of the friction coefficient (the area of the actual
hysteresis cycle increases with velocity v).

- Delay in the spinodal bifurcation due to the finite
sweeping velocity. That too was considered in [4]: it
leads to a power law growth of the cycle area (≈ v2/3)
and it may be viewed as the smooth continuation of
activation beyond the spinodal limit.

Both effects are negligible on the global scale of a mi-
cronic contact, but they must be kept in mind, as far as
they may become significant at a smaller scale, e.g. that of
a boundary lubrication layer at the interasperity interface.

1.7 Where does multistability comes from?

In [4] we ascribed multistability to the elastic response to
vertical compression only. The bare potential V (ρ) was
assumed monostable, say repulsive: the solution to equa-
tion (3b) was obtained graphically as shown in Figure 7. If
the elastic λ is large (“hard” materials) the problem only
has one solution. If instead (λ+V ′′) can become negative
a multistable region develops, leading to hysteresis. While
possible in principle such a mechanism may prove unlikely
once numbers are put in. If the pinning V is due to elastic
forces, both V ′′ and λ are of order Ea and everything is
possible. Indeed a “brushlike” geometry in which asperi-
ties would be high and narrow would undoubtedly lead to
discontinuous spinodal jumps! Unfortunately such a situa-
tion is artificial: asperities are rather in the opposite limit,
i.e. low and broad. Put another way the relative radius
of curvature R of the two facing asperities is much larger
than the radius a of the contact area (the slope of the pro-
file is small: see Fig. 8). The physics can be understood by
first considering that contacts are Hertzian. Then, under
the normal load Fn, the radius a and the vertical elastic
retraction h are qualitatively related according to [12]

a ≈
√
hR Fn ≈ E

√
Rh3. (10)

The maximum pinning energy Vm is of order Fn h,
and the corresponding curvature V ′′ is accordingly
≈ Vm/a2 ≈ Fn/R. Altogether we find

V ′′

λ
≈
h

R
≈
a2

R2
� 1 (11)

It follows that a nearly flat Hertz contact, such that
a� R, will always be monostable3. This conclusion holds
even more strongly when compressive plasticity is taken
into account, since it results in further smoothing of as-
perity profiles. In order to produce multistability at the
single asperity level we need to introduce adhesion into
the picture.

3 We are grateful to Prof. K.R. Johnson for drawing our at-
tention to that feature which we had not appreciated.
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Fig. 7. A graphical solution of the contact equilibrium equation (3b) for the purely ealstic model. If the slope λ of the straight
line is small, a range of multistability exists: A1 and A2 are locally stable, A3 is unstable.
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Fig. 8. A sliding Hertz contact, shown when the asperities just
touch (h = 0). When ρ = 0, the elastic retraction is h0.

In practice what matters is the global “mechanical
characteristic of the asperity” U(ρ), wherever it comes
from. An intrinsic multistability of the bare V (ρ) would
work just as well. A simple example is that of a Jonhson-
Kendall-Roberts (JKR) contact [12,13] in which the Hertz
elastic response is corrected by a surface adhesion energy γ
per unit area. The solution found in textbooks corresponds
to a simple “normal” geometry in which the two asperi-
ties have a common vertical axis, with a normal load Fn.
That problem does display hysteresis, as shown in Figure 9
in which the radius of contact a is plotted as a function
of Fn. For negative loads (i.e. tractions), there exist two
solutions for a given Fn: the slider can either be free or
stuck by adhesion. Beyond a critical Fnc sticking breaks –
conversely when the two asperities touch at F = 0, they
suddenly stick together: in both cases the discontinuous
evolution radiates a bunch of phonons leading to dissi-
pation. As such, the above JKR model does not apply
to our friction problem, in which one asperity is shifted
sideways with respect to its partner by an amount ρ. If
however we make the somewhat unrealistic assumption of
a contact with no resistance to shear, then the net force is

a ~
E

R1/3Fn( )

a

C ac

Fnc Fno

Fig. 9. The radius a of a JKR adhesive contact under a
fixed normal load FN . The critical point C corresponds to
a3
c ≈ γR

2/E, FNc ≈ −γR.

always normal to the common axis of revolution as shown
in Figure 8. The JKR picture is simply rotated, the normal
retraction h being a function of ρ fixed by geometry

h(ρ) = h0

[
1−

ρ2

2R2

]
· (12)

It is a straightforward exercise to convert the curve of Fig-
ure 9 into a curve for the (elastic + adhesive) total energy
U versus h (Fig. 10): we clearly see the usual spinodal
cusp C at which the contact breaks. The other disconti-
nuity occurs at O where sticking sets in (the mathematical
singularity is different). When sweeping h one follows the
trajectories marked by arrows. From U(h) we infer U(ρ),
which has two hysteresis loops, corresponding to breaking
the contact on either side. The U(ρ) picture for one of
them is shown in Figure 11: the critical points C and O
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Fig. 10. Energy U of a JKR contact versus elastic retraction h.
The spinodal cusp C corresponds to hc ≈ −(γ2R/E2)1/3. The
OC branch is locally unstable. Actual backward and forward
trajectories are shown as thick lines.

are still there. Due to the neglect of shear stresses such an
estimate is caricatural4 – but it clearly shows that hys-
teresis with a cusped U(ρ) is common practice.

Whether one or two loops are present makes no differ-
ence: we assume one: F (ρ) is the input. However, even if
elasticity is not the source of hysteresis, we cannot forget
it, as it necessarily comes in when interactions between
distant asperities are included. Expressing F (ρ) in terms
of an underlying elastic picture allows us to use a unified
language for single asperities and for their interactions. In
a qualitative discussion we feel that such an economy of
language is important: we therefore choose to pursue our
elastic description, knowing that it is not realistic at the
one asperity level – it just provides a simpler formulation.

2 Elastic interactions between asperities

We now consider a distribution of active asperities with
random positions Ri (two dimensional) and configurations
ρi (reduced to a one dimensional crude model). Their den-
sity per unit area is n. The pinning force acting on asperity
“i” induces an elastic displacement at the position Rj of
asperity “j”, thereby shifting ρj and modifying the “j”
pinning force – hence an elastic mediated long range in-

4 A much more sophisticated description, including shear
effects, of the failure of a sheared JKR contact with an as-
sumed Coulomb microscopic friction law has been elaborated
by Savkoor [14], and discussed in [2]. Our spinodal discontinu-
ity should then be viewed as a simplified representation of the
fracture event.

U

UU

Fig. 11. Energy of the JKR contact U versus reference con-
figuration coordinate ρ.

teraction, described by the total energy:

U =
∑
i

V (ρi + ui) +
1

2

∑
ij

λijuiuj. (13)

Mechanical equilibrium is achieved when the energy is
minimal:

V ′(ρi + ui) +
∑
j

λijuj = 0. (14)

λij is an elastic stiffness matrix, which relates the displace-
ments ui of point asperities to the local forces Fi needed
in order to achieve these ui:

Fi = λijuj . (15)

Note that the definition of λ is hybrid: we fix the displace-
ments at discrete asperity positions, but, due to the very
definition of the contact geometry, the surface force is zero
everywhere between the asperities. A much more natural
quantity is the inverse (compliance) matrix µ such that
ui = µijFj : then the force is fixed everywhere, finite at
discrete asperities and zero in between. The value of µij
is given in standard textbooks

µii ≈
1

Ea
µij ≈

1

Edij
· (16a)

For a small system of dilute asperities one can easily invert
the matrix, with the result

λii ≈ Ea λij ≈ −
Ea2

dij
· (16b)

However extrapolation to large sizes is dangerous, due to
the long range of elastic forces: the inversion of λ is non
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trivial and whenever possible we will work with µ which
is completely unambiguous5.

The actual position of asperity i is ηi = ρi + ui and
the corresponding pinning potential is V (ρi). Force equi-
librium at site i implies:

V ′(ηi) + λij(ηj − ρj) = 0. (17)

Solving (17) means diagonalizing of a non linear random
N×N problem, a fearful task that implies expansions and
a configuration average on the positionRi of asperities – or
equivalently on their mechanical characteristic F = −V ′.
In what follows we address a few salient questions at a
very naive level of sophistication.

2.1 Total elastic displacement at a given asperity

It results from the response to all pinning forces:

ui =
∑
j

µijFj = −
∑
j

µijV
′(ηj). (18)

Strictly speaking a given uk reacts on all the ηj and the
solution of (18) is by no means trivial: let us try an ex-
pansion in powers of site interactions. In zeroth order we
retain only the term i = j in (18), thereby defining a net
coordinate ηi0 such that

dηi0

dρi
=

λii

λii + V ′′(ηi0)
· (19)

In first order the force on other sites j would create an
extra displacement δui0 = µijFj at site i if there were

5 It could be tempting to argue that the elastic energy
should be translationally invariant, depending only on differ-
ences (ui−uj)

2. That such an argument is wrong is obvious if
we consider two asperities: according to it, the elastic energy
would be ≈ Ea2(ui − uj)

2/dij . Actually the energy is ≈ Eau2

even if they move by the same amount u, because they move
relative to a fixed center of mass (or reference surface at in-
finity: see Landau). If ui = −uj the center of mass does not
matter – still the estimate is wrong as it yields an energy too
small by a factor ≈ a/dij (the energy is dominated by the near
field of impurities). The reason for the paradox may be traced
to the hybrid boundary conditions mentioned earlier. For sim-
plicity assume a scalar dimensionless relation where the force
is controlled everywhere:

u(r) =

∫
d2r′

f(r′)

|r − r′|
·

The 2d Fourier transform is straightforward, uk = 2π fk/k,
yielding at once fk = kuk/2π (translational invariance is re-
flected in the fact that f0 = 0). Inverting the Fourier transform
yields f(r) when the displacement u is controlled everywhere:

f(r) =
1

(2π)2

∫
d2r′

(u(r)− u(r′))

|r − r′|3
·

Then it is true that only the difference (u−u′) enters. But this
does not hold for our system of discrete contacts in which f is
zero in between.

no pinning. But the pinning potential V (ηi) opposes that
displacement: δui0 is equivalent to a shift δρi of the nom-
inal position, distinct from the real shift δηi. The latter
is obtained from (19), and consequently the net elastic
displacement due to other sites is in first order

δui =

[
V ′′(ηi0)

λii + V ′′(ηi0)

]∑
j 6=i

µijV
′(ηj0). (20)

Since ρ is our control parameter it is simpler to describe
the effect of interactions in terms of its shift at site i:

δρi = −
∑
j 6=i

µijV
′(ηj0). (21)

The summation in (21) involves two features:

- an integration over the position Ri of the active asper-
ities, multiplied by their density n: that takes care of
counting;

- an average over their nominal configurational coordi-
nates ρj , which are statistically independent while the
ηj are correlated by elastic interactions.

The two steps can be lumped together in the form∑
j

= ν

∫
d2Rj

∫
dρj (22)

where ν ≈ n/a is the sweeping rate of asperities intro-
duced in dynamic friction. Equations (21–22) yield the
average correction δρi which is of course supplemented by
fluctuations that must be calculated separately.

Let us first assume that all sites are individually
monostable: then the integral∫ +∞

−∞
V ′(ηj0)dρj =

∫ +∞

−∞
V ′(ηj)

λjj + V ′′(ηj0)

λjj
dηj0 (23)

is identically zero: there is no single site average friction
force and consequently no elastic deformations induced by
asperity interactions. That was to be expected! But it is
only true on the average: what about statistical fluctua-
tions? In order to answer that question we calculate:

δρ2
i =

∑
j,k 6=i

µijV
′(ηj0)µikV

′(ηk0). (24)

Since the η0 are uncorrelated only the i = k terms con-
tribute: we thus find

δρ2
i = ν

∫
d2R

∫ +∞

−∞
dρ

[
V ′(η)

ER

]2

· (25)

The average over ρ is non zero, of order F 2/E2, and alto-
gether (ν ≈ d−2):

δρ2
i ≈

∫
d2R

[
F

ERd

]2

· (26)

The integral diverges logarithmically, a direct consequence
of long range elastic interactions. It is cut off at R ≈ d at
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short distances, and at a typical slider dimension L at
large distances (often L will be the thickness of the slider
beyond which the R−1 elastic law is cut off). In the end
the variance δρ2

i is b2Log(L/d), with b ≈ [F/Ed]; for a
purely elastic pinning model the force F is ≈ Ea2 and
b ≈ a2/d.

We will return to these fluctuations in a moment. Be-
fore that, we consider the opposite case of individually
multistable asperities, in a dynamic situation where the
metastable branch is occupied up to the spinodal limit.
Then the average force Fj = −V ′(ηj0) is non zero (it is
responsible for friction!). When carried into (21) it yields a
linearly divergent displacement δρi – an expected result as
the macroscopic friction force shears slider and base. Fric-
tion fixes their shear deformation uzx and consequently
the relative displacement at the interface is inversely pro-
portional to the thickness H, as signaled by the linear di-
vergence. Keeping track of such a singularity (i.e. working
with a large but finite H) is of no interest for our present
purpose: we choose instead to refer the nominal position of
asperities to its average value, as modified by macroscopic
stresses. The average value of δρi is thus eliminated from
the outset, shear being built in the model. We are only left
with fluctuations, which are measured from that average
value. The calculation of the variance is then unchanged,
the only difference being the replacement

F 2 ⇒ F 2 − F̄ 2.

Fluctuations retain their logarithmic divergence.
At that stage we should ask two questions:

(a) How good is the first order calculation? Higher terms
would describe processes in which site j perturbs site
k, which in turn affects site i: does that change the
physics? Since we decided to ignore the average δρi
by an appropriate choice of origin, the issue if of no
importance here: we postpone it to the next paragraph.

(b) What is the physical meaning of the logarithmic diver-
gence of fluctuations? We could be tempted to claim
that a shift of ρi disappears in the configurational av-
erage! In fact such a claim is incorrect. One should in-
deed remember that the contact landscape is entirely
renewed when the slider moves by an amount δρ ≈ a
(the old set is replaced by a new one, uncorrelated
with its predecessor). Consequently δρi can move in
such a small displacement all the way from one side
of the statistical distribution to the other side. That
does not matter much if δρi � a, but it has drastic
effects if δρi is comparable to the asperity size a, i.e.
if the fluctuations can sweep the contacts across the
spinodal discontinuity. That happens if the slider and
base lateral sizes reach a characteristic value λL:

λL ≈ d exp

[
a2

b2

]
· (27)

λL is the “Larkin length” [15] which marks the on-
set of a collective fluctuation regime. On scales � λL
interactions play a minor role while they are domi-
nant on scales � λL. Note that λL depends exponen-
tially on [Ead/F ]2: it is astronomically high for dilute

asperities and usually completely irrelevant for mul-
ticontact interfaces between macroscopic conforming
bodies6. It becomes essential when asperities are con-
centrated, d ≈ a, as may be the case for contact be-
tween non conforming bodies (e.g. ball on plane) under
high enough normal loads – a situation for which our
present approach is not appropriate.

Comparing δρi to a is a handwaving argument, hardly
acceptable when it controls a large exponent. We must
therefore turn to more precise questions, accurately posed:
the first of these is the influence of interactions on other-
wise monostable asperities.

2.2 Interaction induced multistability

An equilibrium configuration is stable if its energy is a lo-
cal minimum: that implies a positive definite second order
variation in (13), i.e. a positive definite matrix:

Aij = δijV
′′
i + λij . (28)

The spinodal limit is marked by a zero eigenvalue of A,
i.e. by the condition Det[A] = 0. We can rewrite A as
λ[1 + µV′′]: Det[A] is a product of two determinants.
Det[λ] is uninteresting as it does not involve pinning (it
has a trivial zero eigenvalue when translational invariance
holds. Here, since the center of mass is held fixed, its lowest
eigenvalue ≈ 1/L, where L is the slider lateral size). All
the physics lies in Det[1 + µV′′], which involves the well
defined matrix µ.

We can look at the problem differently. Assume that
the slider moves by dρ: all the ρi increase by the same
amount. Let us calculate the resulting increase in one of
the actual coordinates ηi. From (14) we infer at once

ηi +
∑
J

µijV
′(ηj) = ρi. (29)

Upon derivation we obtain

dηi

dρ
=
∑
j

[1 + µV′′]−1
ij . (30)

The same matrix B = [1 +µV′′] enters: here we must in-
vert it. A typical matrix element of B−1 involves a minor
divided by Det[B]. If the minor vanishes ηi goes through
an extremum but it remains a single valued function of ρ.
If on the other hand Det[B] vanishes dηi/dρ goes through
infinity. Let us consider these two possibilities separately.
When backward returns of ηi are possible, the “determin-
istic noise” due to other asperities may drive site “i” across
its stability limit several times. If such is the case, it will
jump “prematurely” the first time it can. Thereafter it re-
mains on the stable branch, except if the cycle is so narrow
that noise can also induce backward jumps (that would act

6 In this situation, (d/b)2 is at least on the order of the ratio
of the apparent to the real areas of contact, i.e., for typical
normal load levels, at least 103.



C. Caroli and Ph. Nozières: Hysteresis and elastic interactions of microasperities in dry friction 243

to increase friction, but it is unlikely for dilute asperities).
Early jumps are absorbed in the configurational average
and therefore do not yield any interesting effect. In con-
trast a zero in Det[B] signals a spinodal limit: we recover
the same criterion for multistability as was obtained from
the local stability condition.

So, let us consider the case of N asperities which are
individually monostable, and ask the question of whether
interactions can lead to collective multistability. Unfortu-
nately the problem cannot be solved exactly: we cannot
calculate Det[B] without a configurational average, and
the averaged determinant by itself has no physical mean-
ing (as will be shown later). We thus must reduce our
ambition: we will once more expand in powers of the in-
teraction. Let us assume that µii = Ea is the same for
all asperities, and set µij/µii = a/dij = εij (i 6= j). We
likewise define a dimensionless pinning v = V/Ea. The
matrix B is given by:

Bii = 1 + v′′i , Bij = εijv
′′
j . (31)

Since the diagonal terms of B dominate we separate them
out by writing B = [1 + D]C, with:

Cij = [1 + v′′i ]δij Dij = εij
v′′j

1 + v′′j
(32)

(D is off diagonal). The inverse matrix is

B−1 = C−1[1−D + D2 + ...]. (33)

In first order we find

dηi

dρ
=

1

1 + v′′i

1−
∑
j 6=i

εij
v′′j

1 + v′′j

 · (34)

The second term in the bracket describes the effect of in-
teractions: we want to compare it to the first one. As be-
fore v′′j is calculated at the real (zeroth order) position ηj0
while the average involves an integration over the nominal
positions ρi. It follows that∫ +∞

−∞

v′′j
1 + v′′j

dρj =

∫ +∞

−∞
v′′(ηj0)dηj0. (35)

The average effect of interactions on multistability van-
ishes in first order, just as the average correction δρi does.
The advantage of (33) is that we can push the expan-
sion systematically to higher orders: a typical term of the
expansion will correspond to a “walk” from asperity to
asperity, starting at site i and ending at site j. In order
to achieve a non zero average every visited site (excluding
the site under scrutiny i) must be visited more than once
(actually an even number of times if the average restores
the parity of V (ρ)). The simplest graph of that type is
shown in Figure 12, yielding a contribution

−
v′′i

(1 + v′′i )2

∑
j 6=i

ε3
ij

v′′
2
j

(1 + v′′j )3
· (36)

i

j

Fig. 12. The simplest non zero term in the expansion (19).

The average is finite – but the integral of 1/R3
j coming

from the ε3
ij term converges and it yields a small correction

for dilute asperities (small ε limit). We conclude that on
the average the interaction of dilute monostable asperities
does not give rise to any induced multistability.

The situation is different when we take statistical fluc-
tuations into account. We return to the second term X
in the bracket of (34), which describes first order interac-
tions, and we calculate its variance

X2 =
∑
j 6=i

[
ε

v′′j

1 + v′′j

]2

(37)

(as before the cross terms k 6= j do not contribute). The
configuration average is now non zero

β =

∫ +∞

−∞

[
v′′(ηj)

1 + v′′(ηj)

]2

dρj =

∫ +∞

−∞

(v′′(ηj))
2

1 + v′′(ηj)
dηj 6= 0.

(38)

The space integration is again divergent and it yields
a Larkin logarithm, X2 = b′

2
Log(L/d), where b′ =

(2πva2β)1/2 is here calculated exactly. If X2 reaches 1,
the first term of the series expansion of dη/dρ becomes
comparable to the leading one. Although this does not
prove that the expansion diverges, it can be considered
as a strong hint that tails of the distribution may drive
the asperity i unstable – put another way, that long range
elastic interactions between asperities produce hysteresis
on a scale larger than the Larkin length λL.

This can be made clearer by considering the exactly
solvable case of two individually stable asperities 1 and 2,
a distance d apart. Let us write the matrix µ as

µ =
1

Ea

[
1 ε
ε 1

]
(39)

where ε ≈ a/d is a small quantity. The condition for sta-
bility is

1 + v′′i > 0,

∆ = [1 + v′′1 ][1 + v′′2 ]− ε2v′′1v
′′
2 > 0. (40)

Interaction is destabilizing when v′′1 and v′′2 have the same
sign, in practice when both contacts are close to being in-
dividually multistable, so that there exists a range of ρ for



244 The European Physical Journal B

which v′′i ≈ −1. It follows that interaction helps multista-
bility7. We expect the same to occur for the real N contact
system – the smallness of the effect being compensated by
the divergence of the integrals for large system sizes.

The main lessons learnt from the above discussion are

(a) Multistability arises from fluctuations and not from an
average effect.

(b) The relevant length scale is the Larkin length:

λL ≈ d exp

(
d2

a2

)
· (41)

The harvest is modest, but reasonably under control. We
would like to estimate the area of the resulting collective
hysteresis cycle – i.e. the dynamic friction: it remains out
of reach.

We emphasized the need for averaging well defined
physical quantities. As an illustration let us try to average
the determinant Det[B] directly. Up to second order in in-
teractions it is diagonal except for a single 2 × 2 square:
it follows that

Det|B| =
∑
ij

[
(1 + v′′i )(1 + v′′j )− ε2

ijv
′′
i v
′′
j

] ∏
k 6=i,j

(1 + v′′k ).

(42)

We can carry the averages as before, and we do find log-
arithmic divergences: a Larkin length emerges similar to
(22), but with a different coefficient β. One might argue
that inside an exponent that is a significant difference.
But it must be kept in mind that such estimates must not
be taken literally, but only as signaling the order of mag-
nitude of the length scale on which interactions become
relevant.

2.3 Interaction of individually multistable asperities

The most naive effect is a change in the single site hys-
teresis cycle due to the other asperities. The effect does
exist, but it implies a round trip from i to j and back: it is
second order in εij while we are primarily concerned with
first order effects. Let us instead consider the response to
a global translation δρ. Due to the spinodal discontinuity
the derivation that led to (34) is no longer valid. We must
return one step earlier, writing in first order

dηi

dρ
=

1

1 + v′′i

1 +
∑
j 6=i

1

ERij

dFj

dρ
+ ...

 · (43)

7 One can also calculate dη/dρ

dη1

dρ
=

1 + v′′2 − εv
′′
1

∆
·

A soft site 2 (close to multistability) can drive a stable
site 1 (v′′1 > 0) backwards, but this does not matter as 1 is
far from jumping.

multistable

monostable

GGUU

Fig. 13. The fluctuation amplitude of the force increment δF
when a given asperity is moved by δρ, respectively for a monos-
table and a multistable regime.

dFj/dρ now has a discrete δ-function. That δ-function
does not matter much when we average: whether Fj is
continuous or not, its average is independent of ρ (trans-
lational invariance), and the average dFj/dρ vanishes. We
conclude that the average effect of elastic interactions on
the shape η(ρ) is identically zero, as it was in the absence
of hysteresis. Technically, when the displacement dρ leads
some sites j to jump, others climb the ascending part of
the cycle and the net average distribution remains the
same.

The situation is different when we consider the fluctu-
ations: we cannot average the square of a δ-function. We
must then calculate the statistical distribution of the force
increment δFj for a finite increment δρ. Most contacts j
are far from their spinodal limit: for them δFj is propor-
tional to δρ, leading to a contribution ≈ δρ2 to δF 2

j . A
small fraction ≈ δρ/a jumps upon the displacement δρ,
experiencing a finite discontinuity ∆F : their contribution
to δF 2

j is (δρ/a)∆F 2. The resulting variance of δF as a
function of δρ is sketched in Figure 13: the force and dis-
placement scales are the same as in the monostable case
(the force looses memory when δρ ≈ a), but the behaviour
when δρ → 0 is different. That will result in the “cas-
cade jumps” discussed in the next paragraph. Note that
spinodal jumps are always forward, leading to a positive
discontinuity ∆F .

For a single contact we ascribed dissipation (and conse-
quently friction) to the energy radiated as phonons during
the discontinuous jump. Starting from its original position
ua the asperity oscillates around its new equilibrium po-
sition ub: that oscillation is eventually damped, mostly
through radiation in the bulk (genuine viscous damping
is negligible compared to “radiation damping” familiar in
electrodynamics). The energy loss is the discontinuity in
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the curve of Figure 2:

∆U = U(ρ+, ua)− U(ρ+, ub). (44)

The situation is more complicated in the presence of in-
teractions. When asperity i jumps it shifts the equilibrium
elastic displacements of all other asperities j, even if they
are far from their spinodal limit. Again uj must go from
ua to ub, hence an oscillation, radiation and dissipation.
That must be summed over all sites j and the issue of
convergence arises again, since (ub − ua) ≈ 1/Rij decays
very slowly. Fortunately ub corresponds to a minimum of
the energy as a function of uj and consequently the energy
radiated is of order (ub− ua)2, decaying as 1/R2

ij at large
distances. Still a logarithmic divergence remains: how can
we cope with it? We did not settle the issue but we feel the
answer must be found in the finite response time of the
spinodal jump. The period of the oscillation is typically
cs/a where cs is the sound velocity; radiation damping
of a point source is quick and the oscillation amplitude
decays on the same time scale. That must be compared
to the rate of arrival of signals from various jumping as-
perities i to a given j: the further away they come from,
the more numerous they are. When the rate of arrival is
comparable to the response time, one cannot treat the
resulting elastic relaxations as independent processes. We
should instead consider site j as subject to a random noise
to which it responds globally. That should provide a cut-
off in the logarithmic integration over Rij and guarantee
a well defined finite energy dissipation. We did not pur-
sue the analysis in detail, mostly because a Log is never
a dramatic singularity. But the problem is there and it
deserves thought. We only draw one conclusion: the in-
teraction between asperities increases dissipation since it
creates secondary discontinuities at all sites.

2.4 The problem of cascade jumps

Consider a slider with lateral size L smaller than the
Larkin length. Assume a primary site i jumps: its pin-
ning force changes by ∆F and it creates on every other
site j an extra forward displacement

δuj =
∆Fi

ERij
· (45)

If site j is within δuj from its spinodal limit, it jumps
also – hence a cascade in which the primary jump induces
the jump of P other sites. The total friction force changes
by P∆F , a feature which is reflected in the noise of the
total friction force F . One immediate question is whether
that process is cumulative: site i triggers the jump of site k
which would in turn trigger site j. In such a case one would
have to solve the problem self consistently. We believe that
it is not the case. The jump of intermediate sites k does
produce an extra forward displacement on site j – but the
effect is countered by the backward recoil of all the sites
k which do not jump. On the average the effect of sites k
cancels out, in much the same way as the average value

F d

UU

GG

Fig. 14. A sketch of the noise in the macroscopic friction force.

of dηi/dρ vanished (the average system is translationally
invariant). Only direct cascades remain, in which the jump
of j is directly triggered by i.

The probability that a site j lies within δuj from its
spinodal limit is of order δuj/a: the number of induced
jumps is therefore

P =

∫
d2Rjn

δuj

a
≈
∆F

Ed2

∫
2πRdR

aR
· (46)

The integral diverges linearly: if L is a typical slider size we
find that the cascade has an amplitude P ≈ L∆F/Ead2.
If we remember that the static screening length is
λd ≈ Ead2/∆F , we see that P ≈ L/λd, a very simple re-
sult. (Of course the argument makes sense only if P � 1:
otherwise averages are meaningless).

If P asperities jump together, that must occur P times
less often. Let us first assume that all jumps are individual.
When the slider proceeds by dρ, L2νdρ ≈ L2dρ/ad2 asper-
ities are swept: the spacing between consecutive jumps is
δ0 ≈ ad2/L2. If jumps are collective that spacing becomes

Pδ0 ≈
ad2

Lλd
(47)

equal to a2/L in a purely elastic model. The resulting
behaviour of the friction force F has the sawtooth shape of
Figure 14, the vertical amplitude of discontinuities being
of order L∆F 2/Ead2 (Ea3L/d2 for elastic pinning).

Cascade jumps are a spectacular consequence of elas-
tic interactions between asperities. If that noise could be
resolved it would yield precious information on the under-
lying pinning parameters.

3 Conclusion

The model of multicontact solid friction studied here is
clearly schematic, as far as it neglects effects of paramount
importance to real experimental systems – namely dissi-
pative processes taking place on the smaller subcontact
scale(s), related to plastic and/or viscoelastic slow relax-
ation. In particular, the question of (non linear) viscous
intra-contact dissipation under shear forces on the order
of the static threshold, which remains up to now elusive,
is central for modelling stick-slip dynamics.
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However, this schematic analysis permits to identify
what we believe to be the basic physical ingredients of
multicontact solid friction, thus providing a framework for
more realistic future models.

Namely, solid friction, as defined by the existence of a
static threshold and by finite dissipation at vanishingly
small sliding velocities, implies contact hysteresis. The
sudden asperity jumps occurring at the spinodal limits
of the ranges of multistability of sliding contacts are re-
sponsible for the finite level of low velocity dissipation.

When the external force driving a sliding system is
suddenly suppressed, the slider comes to static equilib-
rium by recoiling with respect to the track, the contact
population is then shared between the two branches of
the force-displacement hysteresis loop.

In this static regime, the interface exhibits a finite elas-
tic stiffness. This reversible elastic range, which terminates
at the static threshold (identical, for our simple model, to
the dynamic friction force), connects smoothly the left-
ward and rightward sliding regimes8. In the static regime,
contact hysteresis gives rise to the new phenomenon of
interface elastic screening: when submitted to space de-
pendent forces, the interface responds (e.g. recoils) rigidly
on scales up to the screening length λd. This length, typi-
cally ≈ d2/a, is much larger than the average intercontact
distance.

An interesting consequence of this unusual behavior
concerns earthquake models of the Burridge-Knopoff type
[16,17]. These models describe sliding faults in terms of a
set of discrete internally rigid elastically coupled blocks;
moreover, each interfacial block experiences a solid fric-
tion force described by a non linear phenomenological law.
One of the questions about some of these descriptions is
concerned with the fact that, as they contain no explicit
length scale, their continuum limit is not well behaved
[18]. This signals the existence of a physical cut-off, which
has not been identified yet. We claim that this cut-off is
the above mentioned elastic screening length. Indeed, in-
terface rigidity on small scales precludes the possibility for
regions of dimensions < λd to start sliding independently
while their neighbours would remain stuck.

On the other hand, as interface recoil adapts on length
scales > λd, this length appears also as the maximum
length of a rigid block. From this we conclude that, in
principle, λd is the size of a Burridge-Knopoff block. Note,
however, that for practical purposes, e.g. numerical in-
vestigations of the dynamics, it is legitimate to choose a
larger size L, provided that L remains smaller than the
space scale of the stick-slip instability. As argued by Rice
et al. [17], this sets an upper limit LR to L. One easily
checks that LR/λd is on the order of (dµd/dLogV )−1, i.e.
typically of order 102, thus confirming the validity of the
Rice criterion for the choice of block sizes.

Finally, we have shown that elastic interactions, in
spite of their long range, only play a minor role in solid

8 Such a behavior can be paralleled with that of an ideally
plastic solid – perfect elasticity below the yield stress, followed,
for larger deformation, by plastic flow at constant stress.

friction of multicontact interfaces. Indeed, although they
can in principle induce collective multistability of individ-
ually monostable contacts, this can only happen on scales
larger than a Larkin length which is, for this problem, so
huge as to be irrelevant in practice, at least under usual
conditions. The contrast between this and the case of vor-
tices [15] or charge density waves [18] stems from dimen-
sionality: here we deal with point pinning centers coupled
via 3D elasticity of the underlying bulk solids. The main
non trivial effect of interactions – force noise induced by
jump cascades – is expected to have a modest amplitude,
and will probably remain difficult to unravel from other
noise sources in real experiments. This justifies the tacit
assumption implied by block models that noise on scales
smaller than the block size itself is irrelevant.

These results lead us to conclude that the simplest
version of our model – a large random set of indepen-
dent centers experiencing a pinning and a shear elastic
force and exhibiting individual multistability – provides
an appropriate framework for the development of more
sophisticated descriptions of real solid friction.
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